An Introduction to HF Communications

Gordon Good, KM6I

What is "HF"

- HF "High Frequency"
- Details later, but for now, if you aren't familiar with the term, call it "shortwave radio"

1

It Was A Dark And Stormy Night

- My introduction to HF
- Arlington, Texas, 1968 or so
- (yes, it really was dark and stormy)

2

About Me

- Licensed since 1975 (age 13)
- Previously WN8YVI, WB8YVI, KC8ES
- Active on HF 1975-1981, some contesting at University of Michigan ARC W8UM
- · Inactive on HF for many years
- Became active in MTV CERT/ARES around 2001
- Got back into HF + contesting in 2008

3

Δ

Outline

- 1. The Electromagnetic Spectrum
- 2. The HF Amateur Radio Bands
- 3. Modes
- 4. HF Propagation Basics
- 5. HF Antennas
- 6. Operating Practices
- 7. Having Fun on HF

5

Unit 1: The Electromagnetic Spectrum

- What is the electromagnetic spectrum?
- Who uses it?
- History

9

Commercial Use

- First use of wireless was ship-to-shore communications using morse code
- First experimental audio broadcasts in 1906, first commercial station 1919
- Radio was largely unregulated amateurs and ship-shore communications often interfered with each other
- Federal Radio Commission established 1926, replaced by the FCC in 1934

Early Radio Experiments

- First observations of radio phenomena in late 18th century
- Mid-1800s scientific foundation laid (Orsted, Henry, Faraday, Maxwell)
- Late 1800s Marconi, Tesla conduct experiments
- 1901 first claimed transatlantic wireless transmission

10

Modern Telecommunications

- Using new modulation techniques (ways of encoding signals over radio)
- Digital communications
- Very high bandwidths (e.g. LTE wireless can achieve 300 Gb per second)
- Higher and higher frequencies
- Most innovation is at UHF/EHF frequencies which are all line-of-sight (max 40 miles or so)

Amateur Radio Allocations

- Early innovations in radio came from "citizen scientists"
- FRC/FCC has always recognized the value of amateur radio
- Even though radio spectrum is extremely valuable (e.g. spectrum auctions), hams have always had slices of spectrum
- Ham allocations range from longwave (135 KHz) to microwave and above

13

HF Amateur Bands

- HF = High Frequency = 3 MHz 30 MHz
- · Amateur allocations at:
 - 1.8 2.0 MHz (160 meters)
 - 3.5 4.0 MHz (80/75 meters)
 - ~ 5.3 MHz (60 meters 5 channels only)
 - -7.0 7.3 MHz (40 meters)
 - 10.1 10.15 MHz (30 meters)
 - 14.0 14.35 MHz (20 meters)
 - 18.068 18.168 MHz (17 meters)
 - 21.0 21.45 MHz (15 meters)
 - 24.89 24.99 MHz (12 meters)
 - 28.0 29.7 MHz (10 meters)

Unit 2: The Amateur HF Bands

- HF Amateur Bands
- Sub-bands: license class, mode
- Sub-bands: considerate operators
- Special Considerations:
 - Primary vs. Secondary users
 - WARC
 - 60 meters

14

Sub-bands: license class, mode

 Within each HF band, operator privileges, modes, and power are limited by license class.

15

Sub-bands: considerate operators

 Band plans lay out "gentleman's agreements" about specific frequencies for specific modes, activities, etc.

3.500-3.510	CW DX window
3.560	QRP CW calling frequency
3.570-3.600	RTTY/Data
3.585-3.600	Automatically controlled data stations
3.590	RTTY/Data DX
3.790-3.800	DX window
3.845	SSTV
3.885	AM calling frequency
3.985	QRP SSB calling frequency

17

WARC bands, 60 meters

- WARC = World Administrative Radio Conference (an ITU technical conference now World Radiocommunication Conference - WRC)
- Additional bands authorized for amateur use at WARC-79
- 30m, 17m, 12m, gentleman's agreement for no contesting, some international power limits
- 60 meter band = 5 specific channels at about 5.3 MHz, non-interference basis

Primary vs. Secondary Users

- Not all "ham bands" are exclusively for our use.
- In some bands, amateurs are secondary users.
 Must not interfere with primary users and are afforded no protection from primary users.
- 1900-2000 kHz shared with radiolocation (FCC considering returning entire band to hams)
- 30 m shared with fixed services in other parts of the world
- 60 m shared with mobile and fixed services

18

Unit 3: HF Modes

- Overview of Modes
- CW
- SSB
- Digital Modes
- New Digital Modes
- Other Modes

19

Overview of HF Modes

- HF bands much narrower than VHF/UHF
 implies narrower bandwidth modes
- Main 3 modes are CW, SSB, and Digital
- CW morse code
- SSB Single Sideband Voice
- Digital catch-all for RTTY, PSK-31, FT-8, and other digital modes
- New digital modes
- Other modes you may hear

21

SSB

- SSB = an amplitude-modulated signal with one sideband and carrier suppressed
- Carrier conveys no information.
 Sidebands are redundant
- Allows all transmitter power to go into conveying information
- · Receiver re-injects carrier

CW

- AKA Morse Code
- CW = "Continuous Wave"
- Not actually continuous. Carrier wave is keyed on and off
- Is a digital mode in the strictest sense.
 Data rate slow enough for human brain to copy it
- Very narrow bandwidth. Depends on speed and keying envelope, but roughly 4x speed in WPM. 20 WPM ~= 80 Hz

22

SSB Full AM modulation SSB modulation (USB) SSB modulation (USB) SSB modulation (USB)

23

Digital modes

- All low b/w compared to WiFi, 3G/4G
- But low b/w is useful, esp in emergency
- RTTY –5-bit baudot code. No error correction or retry. Popular for contesting.
- PSK-31 No error correction or retry. Good for long contacts
- FT-8 Very efficient. Fixed exchange not suitable for EMCOMM.
- Many others: see http://www.kb9ukd.com/digital/

25

"JT" modes

- Excellent weak-signal performance
- Written by Joe Taylor, W1JT, astrophysicist and Nobel Prize winner
- Worldwide communications with low power and simple antennas
- Latest WSJT-X software is extremely easy to set up and use
- FT-8 has really taken off in 2017-2018, extremely popular

New Digital Modes

- · Implemented in software
- Enables rapid innovation. No new hardware. Runs on PC sound card
- Older radios may need isolation transformers + special cables
- Newer radios (e.g. Elecraft K3) plug directly into sound card with 1/8" cables
- Newest radios (Kenwood TS-590sg) have USB audio interfaces built in

26

26

27

Other Modes

· Digital Voice

– Example: FreeDV

• 1600 bits/sec

• 1.25 MHz bandwidth (similar to SSB)

• Tuning around the bands, you may hear:

• AM - Amplitude Modulation, just like AM broadcast band. About 4 KHz wide

• ESSB - Extended SSB. Wider bandwidth with wider audio frequency range

30

29

Unit 4: HF propagation basics

- The Sun and the lonosphere
- Sunspots and Solar Flux
- · Rules of Thumb: what band, what time
- MUF
- K index, A index
- Refraction Angles
- NVIS and EMCOMM
- Propagation Predictions

The Sun and the lonosphere

- Ionosphere can refract HF signals, allows consistent over-the-horizon propagation
- More sunspots -> higher HF bands (typ. 14 Mhz and above) experience refraction
- Sun has an 11-year cycle (
- At a good solar peak in the 11-year cycle, 10m and higher produce amazing propagation (e.g. California -> Europe S9+), but...
- In mid 2016 we are on the downswing of cycle 24 (began in 2008), which turned out to be a dud.

31

32

The lonosphere

- Layers change day vs. night
- D absorbs 10 Mhz and below
- When F layer highly ionized, refracts higher frequencies, e.g. 14 Mhz +

33

Sunspot Numbers, Solar Flux

- Ionizing radiation from the sun ionizes the ionosphere, enhances F layer propagation
- SSN (Smoothed Sunspot Number) from observations.
- Solar Flux proxy for SSN, measures 2800 Mhz radiation from sun.
- Ranges from 0 to ~200 at highest peaks.

34

Ground Wave, Sky Wave

37

Maximum Usable Frequency

 Highest frequency that will allow communication between two points (via skywave)

Rules of thumb: band/time of day

- Daytime = more ionization = higher frequency bands (20m+) open (lower frequencies are absorbed and not refracted)
- Nighttime = less ionization = lower frequency bands (40m-80m) open (higher frequencies not refracted)
- Example: recent DX contest at KM6I
 - early afternoon local time: Japan on 15m, 80m dead
 - 2am local time: 20m dead, Japan on 80m
- 30m and 40m often offer some interesting propagation at all times

38

K-Index, A-Index

- · Both measure geomagnetic activity.
- A-index linear, K-Index logarithmic
- High values -> geomagnetic storm, propagation may be compromised.
- Best conditions when K <= 3, A <= 15
- Solar flares and coronal mass ejections can cause a geomagnetic storm, which can cause an HF radio blackout. Often sudden onset.

39

Refraction Angle

- Longer-path propagation implies lower takeoff angle from antenna.
- Close-in propagation implies high takeoff angle.

41

Propagation Predictions

- We now have a good physical model of how the ionosphere behaves, and how radio waves interact with it.
- VOACAP engine (from US gov) implements this model.
- Takes into account sunspot number, time, produces estimate of propagation from one point to another
- VOAAREA program feeds model for many receiver points, produces graphs, e.g.

NVIS and EMCOMM

- NVIS = Near-Vertical Incidence Skywave
- Signal goes pretty much straight up, refracted back to close-in targets.
- Useful for regional EMCOMM, e.g. Silicon Valley to Sacramento
- A half-wave dipole close to the ground exhibits very high takeoff angle = good NVIS antenna (but a poor DX antenna)
- More in next section

42

43

45

HF Antenna Overview

- Tend to be large
- Two main types: horizontal and vertical
- Antenna Gain a measure of how well the antenna transmits/receives in a given direction
- Gain is measured relative to a theoretical antenna that radiates equally well in all directions (e.g. a sphere)

Unit 5: HF Antennas

- Overview
- Basic HF Antenna Types:
 - Wire dipoles
 - Verticals
 - Directional arrays
- Antenna Modeling

46

Wire dipoles

- A ½ wavelength wire, fed in the center, exhibits about a 50 ohm impedance (good match for amateur equipment that happens to have 50 ohm impedance)
- Easy to construct
- Can be large (1/2 wavelength on 80 meters is about 120 feet long)
- Unless about ½ wavelength above ground, tend to shoot straight up (NVIS)
- · Great if you have tall trees

47

Verticals

- Omnidirectional
- Performance highly dependent on quality of ground. Normal soil does not provide a good ground plane, so you need radials (wire on the ground). With a good radial field, verticals can have a low takeoff angle – good DX antenna.
- Raised radials are more effective, but must be resonant
- Salt water *is* a good ground plane (at that beachfront villa you own)
- Some "no radials required" verticals are actually dipoles, mounted vertically

49

Directional arrays

- Most common yagi. Driven element plus parasitic elements (reflector, directors) turned by a rotator.
- Typical gain for a 3-element yagi is 7-9 dB.
- 9 dB is like going from 100 watts to 800 watts w/same antenna (1.5 S-Unit improvement)
- Yagis for lower bands (40, 80) can get big (75 foot boom for a 4 el 80 meter yagi), and need to be very high (120 ft on 80m)

50

51

A 160 meter (1.8 MHz) Yagi?

53

Unit 6: Operating Practices

- Telling time
- Calling/Answering CQ
- Phonetics
- Q-codes
- Passing traffic on HF voice
- Sharing the bands
- Signal quality
- RFI

It may end badly...

54

Telling Time

- Since HF signals cross many time zones, UTC time is used (time in Greenwich, England)
- CA is UTC -8 hours, -7 hours during daylight savings time.
- Example: 1100 local time today is 1800 UTC (6 pm).

55

Calling CQ

- Pick a frequency that's:
 - Not in use
 - On a frequency you're licensed for
 - Is not one with a gentleman's agreement
- Listen for a while
- If nothing heard, say "Is this frequency in use" (phone) or send "QRL?" (CW)
- Call CQ

57

Answering a CQ

- Be sure you're on the other station's frequency
- Be brief, e.g. "W1AW, this is K6MTV, Kilo Six Mike Tango Victor"

Example CQs

- Phone: "CQ, CQ, CQ 40 Meters. this is KM6I, Kilo Mike Six India calling CQ 40 Meters and listening."
- CW: "CQ CQ CQ DE KM6I KM6I KM6I K"
- Digital: (same as CW for some modes, others are Call + grid square)
- Several short CQs (with listening time between) are better than one long one

58

Typical QSO Exchange

- First round: Signal report, QTH, name
- Second round: gear, occupation, etc.
- FT-8 has standard exchange:
 - Grid squares
 - · Signal level in db above receiver noise floor

59

Signal Reports: RST

- RST = **R**eadability, **S**trength, **T**one
- Readability: 1 = unreadable, 5 = perfect copy
- Strength: 1 = very faint, 9 = very strong. Many report S-meter reading
- Tone: Not used on phone. On CW: 1 = 60 Hz harsh tone, 9 = perfect sine wave. On digital, has come to mean quality of transmitted digital signal, e.g. how much inter-modulation distortion

Q-codes

• In contests, everyone is 59 or 599

61

Phonetics

- Same as we use in ARES, but some latitude.
- Especially in DX contests, some "alternate" phonetics are common:
 - India -> Italy
 - Mike -> Mexico
 - Zulu -> Zanzibar

 Sometimes these seem to "cut through" QRM a bit better, but don't use these on the ARES nets.

- Discouraged on VHF
- · Good for CW, also used on HF SSB
- Common:

62

- QRZ? who is calling me
- QRM interference
- QRN noise
- QRS send slower
- QSY change frequency

63

Passing traffic on HF voice

- ARRL Radiogram format is the "Lingua Franca" for messages traveling a long distance – much like our ARES/RACES ICS213 message form
- Otherwise, procedures are just like we teach in local ARES (spell phonetically, pause every 5 words, etc)

65

Transmitted signal quality

- It's your responsibility to make sure your signal is clean.
- Ideally, all of us would have a monitor scope, but...
- Often signal reports from other amateurs are the tool we have.
- Become familiar with how to generate a clean signal on the modes you operate.

Being a good sport about operating frequencies

- No one "owns" a frequency.
- Listen before transmitting. Then listen some more.
- If a net frequency is occupied, net control will politely ask others to vacate, and they usually do.
- Be aware that on HF, because of propagation, you might only hear one side of a conversation.
- Always ask: "QRL?" on CW, "Is the frequency in use?" on voice.
- Respect informal band plans (e.g. stay away from beacon frequencies).

66

68

RFI – Radio Frequency Interference

- RFI received by amateur:
 - Many consumer electronic devices emit stray RF
 - Chokes, shielding often help
- RFI "caused" by amateur:
 - Devices act as unintentional receivers
 - Chokes, shielding, shortening long wires are often helpful
- ARRL RFI Handbook
- A Ham's Guide to RFI, Ferrites, Baluns, and Audio Interfacing – Jim Brown, K9YC, on web

Unit 7: Having Fun on HF

- It's magic!
- DXing
- Contesting
- Weird stuff (e.g. "K" beacon)
- The missing Q codes

69

DXing

- DXing = making contacts over long distances
- Awards granted for things like 100 countries (DX Century Club) etc.

It's Magic!

- Using about as much power as a light bulb, you can transmit a signal that will induce enough current in a piece of wire in Japan so that a ham there can communicate with you.
- On HF, you really feel connected with what's going on with the Sun, the Earth, and the ionosphere.

70

Casual DX vs. pileups

- For "non-rare" DX stations, you may be able to ragchew
- Rare countries produce pileups: many stations calling at once
- DX station's goal is to make as many contacts as possible, esp. for dxpeditions.
- Typical report during a pileup is only a signal exchange
- Good DX ops can do hundreds of QSOs per hour
- DX stations often listen on one frequency and listen on another

71

Contesting

- My favorite aspect of the hobby
- General Objective: as many contacts as possible in a given time period
- Hones operator skills, especially for modest station (100 watts, wire antennas)
- Many different contests each year. See http://www.hornucopia.com/contestcal/
- Local club: Northern California Contest Club http://nccc.cc

73

Let's Make a Field Day QSO

- We hear station W8UM calling CQ, and call:
 - W8UM: "CQ Field Day. This is W8UM, Whiskey Eight Uniform Mike, Field Day"
 - K6MTV: "W8UM, Kilo Six Mike Tango Victor"
 - W8UM: "K6MTV, Three Alfa, Michigan"
 - K6MTV: "Roger. One Foxtrot, Sierra Charlie Victor"
 - W8UM: "Thanks and Good Luck. Whiskey Eight Uniform Mike, Field Day"

Contest Exchanges

- Each contest will have its own exchange. Need to read the rules
- ARRL Field Day in June is a great way to try contesting
- Many clubs have a GOTA (Get On The Air) station with mentors to help – show up and they'll help you try it out!
- Example: Field Day exchange is <Class>
 <ARRL Section>

74

75

Computer Integration

- Computer logging programs can handle all logging and duping tasks
- Also can send CW and pre-recorded voice exchanges
- Most programs will interface with radio and will read frequency from radio and log it
- Other nice features: visual cues for duplicates, pre-fills, fast frequency switching
- First time I used N1MM, I thought I'd need scratch paper to jot down calls. Never used it!

Contest Stations

- It's possible to have a lot of fun with a modest station:
 - 100 watts, wire antenna
 - special challenges in QRP (< 5 watts)</p>
- some people take this very seriously, like the following:

77

A "modest" contest station

http://www.arubaqth.com/index.html

78

A not-so-modest station (N0NI)

79

K3LR Multi-Op Station

SO2R Station

81

83

SO2R

- Single Operator 2 Radios
- Two radios on different bands. Typically, one radio is the "run" radio and the other is used for S&P.
- While the run radio is calling CQ, operator tunes the other radio.
- Audio switching allows op to listen to run rig, S&P rig, or both (one in each ear).
- If no answer to CQ, make an S&P contact on the other radio.
- It's rub-tummy-and-pat-head to the extreme!

82

SO6V

Resources

- Clubs with HF interests:
 - Palo Alto Amateur Radio Association http://paara.org/
 - Foothills Amateur Radio Society https://www.fars.k6ya.org/
 - Northern California DX Club http://ncdxc.org/
 - Northern California Contest Club http://nccc.cc/
- Events:
 - Pacificon (San Ramon Oct 20-22) http://pacificon.org/

85

Thanks! Any Questions?

"Elmering"

- Elmer = one-on-one mentor
- NCDXC:
 - Helps you learn how to set up an HF station
 - Webinars + visits to elmer's stations
 - http://www.ncdxc.org/pages/elmer.html
- CW Operators Club CW Academy:
 - Mentors, one-on-one CW experience
 - https://www.cwops.org/cwacademy.html